Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Asthma ; : 1-10, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696283

RESUMO

OBJECTIVE: Paclitaxel exhibits outstanding biological activities in inhibiting cell proliferation and inducing cell apoptosis. But the effects of paclitaxel on airway smooth muscle cells (ASMCs) have not been reported yet. The purpose of this study is to determine the effects of paclitaxel on the proliferation and apoptosis of ASMCs. METHODS: Rat primary ASMCs were isolated and used in all the experiments. Cell Counting Kit-8 (CCK-8) assay and Edu assay were used to analyse the cell viability and proliferation respectively. Flow cytometry was used to detect the cell cycle and apoptosis. Quantitative real-time PCR (qRT-PCR), western blotting, and immunostaining were used to detect the expression of Cyclin-dependent kinase 1 (Cdk1). RESULTS: Our study showed that paclitaxel inhibits the proliferation of ASMCs in a dose and time gradient dependent manner. Further study displayed that cell cycle is arrested at G2/M phase. And Cdk1 was dramatically down-regulated by paclitaxel treatment. Cell morphological analysis showed that ASMCs are elliptical with a larger surface area after paclitaxel treatment. Nucleus morphological analysis showed that the nuclei are in a diffuse state after paclitaxel treatment. But paclitaxel did not induce the apoptosis of ASMCs. CONCLUSIONS: Our study demonstrated that paclitaxel inhibits the proliferation of ASMCs at least partly by negatively regulating Cdk1-cell cycle axis.

2.
Transl Neurosci ; 15(1): 20220338, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38623574

RESUMO

Background: The deposition of Aß42 has been regarded as one of the important pathological features of Alzheimer's disease (AD). However, drug development for Aß42 toxicity has been progressed slowly. Objective: Our aim was to introduce the effect and related mechanism of trehalose on an Aßarc (arctic mutant Aß42) Drosophila AD model. Methods: The human Aßarc was expressed in Drosophila to construct the AD model. Trehalose was added to the culture vial. The movement ability was determined by detecting climbing ability and flight ability. Enzyme-linked immunosorbent assay was used to detect the levels of Aßarc, ATP, and lactate. Electron microscopy assay, mitochondrial membrane potential assay, and mitochondrial respiration assay were used to assess the mitochondrial structure and function. Results: Trehalose strongly improved the movement ability of Aßarc Drosophila in a concentration gradient-dependent manner. Furthermore, trehalose increased the content of ATP and decreased the content of Aßarc and lactate both in the brain and thorax of Aßarc Drosophila. More importantly, the mitochondrial structure and function were greatly improved by trehalose treatment in Aßarc Drosophila. Conclusion: Trehalose improves movement ability at least partly by reducing the Aßarc level and restoring the mitochondrial structure and function in Aßarc Drosophila.

3.
CNS Neurosci Ther ; 30(4): e14527, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37990437

RESUMO

AIMS: The accumulation and deposition of ß-amyloid (Aß) has always been considered a major pathological feature of Alzheimer's disease (AD). The latest and mainstream amyloid cascade hypothesis indicates that all the main pathological changes in AD are attributed to the accumulation of soluble Aß. However, the exploration of therapeutic drugs for Aß toxicity has progressed slowly. This study aims to investigate the protective effects of Icaritin on the Aß-induced Drosophila AD model and its possible mechanism. METHODS: To identify the effects of Icaritin on AD, we constructed an excellent Drosophila AD model named Aßarc (arctic mutant Aß42) Drosophila. Climbing ability, flight ability, and longevity were used to evaluate the effects of Icaritin on AD phenotypes. Aßarc was determined by immunostaining and ELISA. To identify the effects of Icaritin on oxidative stress, we performed the detection of ROS, hydrogen peroxide, MDA, SOD, catalase, GST, and Caspase-3. To identify the effects of Icaritin on energy metabolism, we performed the detection of ATP and lactate. Transcriptome analysis and qRT-PCR verifications were used to detect the genes directly involved in oxidative stress and energy metabolism. Mitochondrial structure and function were detected by an electron microscopy assay, a mitochondrial membrane potential assay, and a mitochondrial respiration assay. RESULTS: We discovered that Icaritin almost completely rescues the climbing ability, flight ability, and longevity of Aßarc Drosophila. Aßarc was dramatically reduced by Icaritin treatment. We also found that Icaritin significantly reduces oxidative stress and greatly improves impaired energy metabolism. Importantly, transcriptome analysis and qRT-PCR verifications showed that many key genes, directly involved in oxidative stress and energy metabolism, are restored by Icaritin. Next, we found that Icaritin perfectly restores the integrity of mitochondrial structure and function damaged by Aßarc toxicity. CONCLUSION: This study suggested that Icaritin is a potential drug to deal with the toxicity of Aßarc, at least partially realized by restoring the mitochondria/oxidative stress/energy metabolism axis, and holds potential for translation to human AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Flavonoides , Animais , Humanos , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Estresse Oxidativo , Drosophila/metabolismo
4.
CNS Neurosci Ther ; 30(4): e14476, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37735992

RESUMO

AIMS: The aim of this review is to systematically summarize and analyze the noncoding RNAs (ncRNAs), especially microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), in the cell apoptosis among Alzheimer's disease (AD) in recent years to demonstrate their value in the diagnosis and treatment of AD. METHODS: We systematically summarized in vitro and in vivo studies focusing on the ncRNAs in the regulation of cell apoptosis among AD in PubMed, ScienceDirect, and Google Scholar. RESULTS: We discover three patterns of ncRNAs (including 'miRNA-mRNA', 'lncRNA-miRNA-mRNA', and 'circRNA-miRNA-mRNA') form the ncRNA-based regulatory networks in regulating cell apoptosis in AD. CONCLUSIONS: This review provides a future diagnosis and treatment strategy for AD patients based on ncRNAs.


Assuntos
Doença de Alzheimer , MicroRNAs , RNA Longo não Codificante , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , RNA não Traduzido/genética , RNA Longo não Codificante/genética , RNA Mensageiro , RNA Circular/genética
5.
Eur Respir Rev ; 32(168)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37076176

RESUMO

Asthma is a complex and heterogeneous airway disease caused by genetic, environmental and epigenetic factors treated with hormones and biologics. Irreversible pathological changes to airway smooth muscle cells (ASMCs) such as hyperplasia and hypertrophy can occur in asthmatic patients. Determining the mechanisms responsible is vital for preventing such changes. In recent years, noncoding RNAs (ncRNAs), especially microRNAs, long noncoding RNAs and circular RNAs, have been found to be associated with abnormalities of the ASMCs. This review highlights recent ncRNA research into ASMC pathologies. We present a schematic that illustrates the role of ncRNAs in pathophysiological changes to ASMCs that may be useful in future research in diagnostic and treatment strategies for patients with asthma.


Assuntos
Asma , MicroRNAs , Humanos , Células Cultivadas , Asma/diagnóstico , Asma/genética , Asma/patologia , Miócitos de Músculo Liso/patologia , MicroRNAs/genética , Proliferação de Células
6.
Am J Transl Res ; 14(11): 7726-7743, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505285

RESUMO

OBJECTIVE: To investigate the role of Osteopontin (OPN) in mediating macroautophagy, autophagy, and neuroplasticity in the ipsilateral hemisphere after stroke. METHODS: Focal stroke was induced by photothrombosis in adult mice. Spatiotemporal expression of endogenous OPN and BECN1 was assessed by immunohistochemistry. Motor function was determined by the grid-walking and cylinder tasks. We also evaluated markers of neuroplasticity and autophagy using biochemical and histology analyses. RESULTS: Herein, we showed that endogenous OPN and beclin1 were increased in the peri-infarct area of stroked patients and mice. Intracerebral administration of OPN (0.1 mg/ml; 3 ml) significantly improved performance in motor behavioral tasks compared with non-OPN-treated stroke mice. Furthermore, the neural repair was induced in OPN-treated stroke mice. We found that OPN treatment resulted in a significantly higher density of a presynaptic marker (vesicular glutamate transporter 1, VgluT1) and synaptic plasticity marker (synaptophysin, SYN) within the peri-infarct region. OPN treatment in stroke mice not only increased protein levels of integrin ß1 but also promoted the expression of beclin1 and LC3, two autophagy-related proteins in the peri-infarct area. Additionally, OPN-induced neuroplasticity and autophagy were blocked by an integrin antagonist. CONCLUSION: Our findings indicate that OPN may enhance neuroplasticity via autophagy, providing a new therapeutic strategy for ischemic stroke.

7.
Acta Histochem ; 123(8): 151810, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34749031

RESUMO

Trehalose is a disaccharide with multiple important biological activities. In many cell types, Trehalose regulates the physiological behaviors of proliferation, apoptosis and autophagy. But the effects of trehalose on ASMCs have never been reported. Here, we showed that trehalose activated autophagy of ASMCs at low dose, inhibited proliferation and induced apoptosis of ASMCs at high dose. Further study, we found the cell cycle was arrested in S and G2\M phases, the expression of CyclinA1 and CyclinB1 decreased. Then, we investigated the ratio of Bcl-2/Bax was drastically reduced. Next, we detected an important transcription factor TFEB, which is closely related to autophagy. We found TFEB was highly activated with trehalose treatment. And many downstream autophagy-related genes of TFEB were also up-regulated. In summary, trehalose plays an important role on the regulation of proliferation, apoptosis and autophagy of ASMCs.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Sistema Respiratório/metabolismo , Trealose/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ratos , Ratos Sprague-Dawley
8.
Free Radic Biol Med ; 130: 458-470, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30448512

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease of the brain. It cannot be cured currently, and those suffering from AD place a great burden on their caregivers and society. AD is characterized by high levels of iron ions in the brain, which catalyze radicals that damage the neurons. Knowing that the Aß42 peptide precipitates iron by binding iron ions at amino acid residues D1, E3, H11, H13, and H14, we synthesized a 5-repeat (HAYED) sequence peptide. By treating iron-stressed SH-SY5Y cells with it and injecting it into the cerebrospinal fluid (CSF) of naturally senescence Kunming mouse, which displaying AD-similar symptoms such as learning and memory dysfunction, neuron degeneration and high level of iron in brain, we found that HAYED (5) decreased the iron and radical levels in the cell culture medium and in the CSF. Specially, the synthesized peptide prevented cell and brain damage. Furthermore, functional magnetic resonance imaging (fMRI), Morris water maze and passive avoidance tests demonstrated that the peptide ameliorated brain blood-oxygen metabolism and slowed cognitive loss in the experimental senescence mice, and clinical and blood tests showed that HAYED (5) was innoxious to the kidney, the liver and blood and offset the AD-associated inflammation and anemia.


Assuntos
Envelhecimento/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/farmacologia , Envelhecimento/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Ferro/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/química , Fragmentos de Peptídeos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA